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Linear algebra main problem in ML/DL
• In machine learning, many problems can be solved by linear transformations and systems of

linear equations.
• Let A and Y be n-size matrix representing a set of n observations and the vector of their labels.

The search of a function f(A)=Y can be expressed as a linear system:
Ax=Y

• Let (u1, …, un) be the set of eigenvectors ofA. Their linear transformation byA does not change
their orientation but only scales them.
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Principal Component Analysis: The goal is to find an orthonormal basis of the space of
a dataset such that the variance of the dataset (degree of dispersion) in this basis is
maximized. PCA helps reduce redundancies in datasets and extract important features
while preserving accuracy.

• Let Χ ∈ ℝ#×% be a centered matrix of 𝑛 observations of 𝑝 features. The PC of 𝑋 are
the dominant eigenvectors of its covariance matrix 𝐴 = &

#𝑋
'𝑋.

• The PC of 𝑋 are its dominant right singular vectors: 𝑋 = 𝑈Σ𝑉'
with 𝑈 ∈ ℝ#×#, 𝑉 ∈ ℝ%×% unitary and Σ ∈ ℝ#×% diagonal matrices of singular values.
𝐴 = 𝑋'𝑋 = 𝑉Σ(𝑉'. The columns of 𝑉 are the right singular vectors of 𝑋.

PageRank algorithm example: The Markov matrix leads to the equation which the
steady state depends on one dominant component: 𝜆&)𝒖𝟏+ 𝛼&𝜆()𝑢(+…+ 𝛼#𝜆&)𝑢#.

Dominant eigenspace in ML



ML methods and linear algebra

Goal: Build smarter machines thinking and acting on their own (needs of training –still- and more
and more data)

• Supervised machine learning methods
o Linear regression, logistic regression, recommendation systems,ANN, etc.
o Linear algebra problem as linear systems and eigenproblems
• Unsupervised machine learning methods
o K-means for partitioning, dimensionality reduction, CPA, etc.
o Essentially eigenproblems and SVD
• Reinforcement learning methods (exploration & exploitation)
o Bandit, Markovian decision problems, game trees.

11/13/22SC22 | Dallas, TX | hpc accelerates. 4



High performance data analysis
• Data production is now faster than compute capabilities
• Applications are classical simulation, social network-based simulation, ML algorithms
• Emerging Exascale supercomputers : Multi-level architectures (processor, memory, …),

mixed arithmetic (16, 32, 64 bits,...), ..., and convergence of distributed and parallel computing
inside them.
• Need of new programming paradigms for this extreme computational and data sciences

programming.
• New methods must be developed (involving applied math, graph theory, Bayesian network,

statistic, linear algebra, game theory, ...) but also, the new approaches such as transformer used
in NLP.
• Big Data analysis and HPC convergence is crucial to propose future machine learning

algorithm for Post-Petascale platforms and supercomputers
New paradigms for new intelligent applications
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Outline

• Main problems in linear algebra (moderate size)

• Large and sparse linear algebra problem

• High-performance AI  and LA with applications

• Concluding remarks
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Main problems in linear algebra (moderate size)

• Solving LS (topic well mastered overall)
Ø Direct methods as Gauss and Gauss-Jordan, Cholesky, Householder based on LU, 

Cholesky, QR decomposition.
Ø Iterative methods as Jacobi, Gauss-Seidel, Relaxation.

• Solving EIG (topic not so well mastered)
Ø Only iterative methods (Abel-Ruffini theorem) as Jacobi and QR
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Linear system (LS) : 

Eigenproblem (EIG) : 



Focus on Eigenproblem
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Power of eigenvectors :
üA doesn't change the orientation 

of an eigenvector and/or 
eigenspace but just scales it. 

üPrincipal components or axes of 
dataset. 
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Focus on Eigenproblem
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Power of eigenvectors :
üA doesn't change the direction 

of an eigenvector and/or 
eigenspace but just scales it. 

üPrincipal components or axes 
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Large and sparse linear algebra problems

• Sparse dataset 

ØAvoiding fill-in – iterative methods

ØProblem : how to compress the dataset ? Use of ML methods

• Large dataset 

ØDimensionality reduction - projection onto Krylov subspace

ØProblem : how to choose the projection subspace ? Too large/small-size, …
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Large and sparse linear algebra problems
Iterative projection method  
Ø Preserve sparsity
Ø Reduce the problem size
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initial 
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sparsity processing

Main problems for these methods

Ø Sparsity processing

Ø Krylov subspace: better choice of 𝑣 for 𝕂+ 𝐴, 𝑣 = 𝑠𝑝𝑎𝑛 (𝑣, 𝐴𝑣,… , 𝐴+,&𝑣)
better choice of m and 𝑣 ?

What about m ?



Unite and Conquer methods - an innovative approach 
Suppose we have ℓ iterative methods to solve the same given problem. The unite and conquer
approach consists of making collaborate these ℓ methods in order to accelerate the convergence of
the whole system.
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The key part of the method: restarting strategy

Well suited to large-scale computing systems

Characteristics of UC methods

• Multi level parallelism (heterogenous coarse and fine grain)
• Asynchronous communication
• Fault tolerance
• Great potential to dynamic load balancing
• Many parameters, many reuse software components
• Need well suited «standard» programming tools
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With S. Petiton, G. Edjlali, A. Fazeli, J. Dongarra, A. Drummond, T. Sakurai, 

M. Tsuji, C. Calvin, A. Fender, Z. Liu, J. Eaton, M. Naumov and many others.

N. Emad, S. Petiton. Unite and Conquer Approach for High Scale 

Numerical Computing, Journal of Computational Science, ISSN-1877-

7503, 2016.



Unite and Conquer methods

Due to the numerical and computational properties of a UC method, its overall
convergence and computational performance are better than that of each of its co-
methods individually.
ØMultiple-Method : Case of UCM when the co-methods are the instances of the same

iterative method. Example: MERAM, MIRAM, MIRLanczos, with different or nested
subspaces.

ØThe asynchronism of communications implies better computational performance but
introduces a certain non-determinism.

ØThe application of the UC approach to ML methods, which are inherently non-
deterministic, does not suffer from this non-determinism.
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HPC and AI convergence
• About ML/DL: 

• 1943 : first NN 

• 1957 : first NN with training 

• 1974-1981 : “silence” 

• 1981 : first perceptron multilayer 

• 1990 : first CNN-LeCun

• 1997 : first RNN (LSTMs)

• Circa 2012 :  The flight of ML/DL with Big Data and computing power

• Circa 2017 : Extension of NLP with transformers  
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High performance AI and LA with applications

1. Sparse computation : a common topic of HP LA & ML/DL (supervised ML)

2. Focus on clustering (unsupervised ML) using UC methods 

o K-means and  spectral computation 

o nvGraph of NVIDIA 
(https://github.com/rapidsai/nvgraph/blob/main/cpp/src/lanczos.cu)

3. Focus on (semi)supervised (classification) using UC methods 

o UCM application to ensemble learning

o UCEL  framework (the version for behavior profiling integrated to an alarm system in 
Atos company)

11/13/22SC22 | Dallas, TX | hpc accelerates. 21

https://github.com/rapidsai/nvgraph/blob/main/cpp/src/lanczos.cu


Sparse Computation : A common topic of HP LA & ML/DL
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Automatic detection of the best sparse compression format as a function of the context (numerical
method, parallel programming model, parallel/distributed architecture, etc.) : Auto-Tuning, Expert
System and then Machine Learning

Features: number of rows, nonzero elements, matrix density, the matrix is unstructured, is structured
(diagonal, triangular, band, etc.), maximum/minimum number of nonzero elements per row (& par column),
cost of a data parallel operation, number of physical/virtual processors, …



• Mehrez,,Hamdi, Dufaud,Emad.Machine Learning for Optimal CompressionFormat Predictionon Multiprocessor Platform.HPCS2018: 213-220.
• Hamdi et al. Machine Learning to Design an Auto-tuning System for the Best Compressed Format Detection for Parallel Sparse Computations, Parallel

Process.Lett. 31(4): 2150019:1-2150019:37 (2021).

Sparse Computation : A common topic of HPLA & ML/DL
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Classifier accuracy (SVM): 95.65%.  Formats: CSR, CSC, ELL, COOC, COOR.  
Hardware: Grid5K French national platform. Labeled data: 600

ML for the BCF Detection for Parallel Sparse Computations

2150019-21

identify the best model for finding a relationship between the set of attributes and the set
of classes (tags) of the input data. As it is shown in Figure ͳͲ, the model generated by the
learning algorithm must correctly predict classes of the new data [50, 53].

The problem of BCF selection can be formulated as a classification problem where
each format represents a class. For that, we first constitute our dataset with representative
sparse matrices and extract features. In a second step, we use a classification algorithm to
build a model from the training set which will be validated on a testing set. To evaluate our
system, we analyze the average performance of our system on 10 different choices of
partitioning of the data set called division.

�
Fig. 10. Learning process.

5.1.1. Matrix data set

Our set of matrices is composed of:

x Real matrices selected from Tim Davis collection of sparse matrices (structured and 
unstructured matrices) [12]. These matrices cover a wide spectrum of domains such as 
structural engineering, computational fluid dynamics, electromagnetic, optimization, 
circuit simulation, etc.

x Random generated structured sparse matrices (diagonal and triangular matrices).
x Pathological matrices (Figure 7).

Table 5 represents statistics on matrices used in our study. All matrices are square with
sizes are varying between 362 and 2.99E+06. The number of nonzero elements in a matrix
is between 1000 and 2.1E+09. Hence, the density of a matrix (number of nonzero over the
size) is in the range [0.0001% : 80%].

Table 5. Statistics on matrix dataset.࢔ ࢠ࢔࢔ ࢚࢟࢏࢙࢔ࢋࢊ
[362 : 2.99E+06] [1000 : 2.1E+09] [0.0001 : 80]%

Decision model with the SVM classification algorithm

Pipeline GPTune (https://gptune.lbl.gov/about) specifically designed for HPC applications (J. Demmel -
UCB, Sherry Li, Hengrui Luo,… - LBNL).



Focus on clustering (unsupervised ML)
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4  

THE CLUSTERING PROBLEM 

Pink      Liberal 

Yellow  Neutral 

Green   Conservative 

 

 

 

Data: V. Krebs. 2004 

Visualization: M. Bastian, S. Heymann, and M. Jacomy. “Gephi: An Open Source Software for exploring and manipulating networks” 2009 

The multiple implicitly restarted Arnoldi
MIRAMns and multiple implicitly restarted
Lanczos methods MIRLanczos_ns with nested
subspaces are used.

3  

THE CLUSTERING PROBLEM 

 
Example: detect relevant 
groups based on frequent co-
purchasing on Amazon.com 

Visualization: M. Bastian, S. Heymann, and M. Jacomy. “Gephi: An Open Source Software for exploring and manipulating networks” 2009 

Data: V. Krebs. 2004 

Two main methods allow partitioning vertices 𝑉 of
a graph 𝐺 = 𝑉, 𝐸 in a set of clusters 𝑆! ⊆ 𝑉 such
that 𝑉 =∪!"#

$ 𝑆! are modularity maximization
and minimum balanced cut. This by computing
the largest eigenpairs of the modularity matrix or
the smallest of the Laplacian matrix.



Focus on Clustering (2)
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MODULARITY MAXIMIZATION PIPELINE 
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1. Let 𝐺 = (𝑉, 𝐸) be an input graph and 𝐴 be its weighted adjacency matrix.
2. Let 𝑝 be the number of desired clusters.
3. Set the modularity matrix 𝐵 = 𝐴 − #

%&
𝑣 𝑣'

4. Find p largest eigenpairs 𝐵𝑈 = 𝑈Σ, where Σ = 𝑑𝑖𝑎𝑔 𝜆#, … , 𝜆$
5. Scale eigenvectors 𝑈 by row or by column (optional).
6. Run clustering algorithm, such as k-means, on points defined by rows of 𝑈.



Focus on Clustering (3)
Profiling: modularity clustering
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PROFILING 

The sparse matrix vector multiplication 
takes 90% of the time in the eigensolver 

 

 

The eigensolver takes 90% of the time 

 

 

 



Focus on clustering (4)

A. Fender, N. Emad, S. Petiton, M. Naumov, Parallel Modularity Clustering, Procedia Computer Science, Volume 108, 2017, Pages 1793-1802
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SPECTRAL MODULARITY MAXIMIZATION 
Spectral Modularity maximization                                  Ground truth 

 

84% hit rate 

 



Focus on (semi)supervised classification using UC methods 

Classification methods: Logistic Regression, naive Bayes, stochastic Gradient Descent, KNN,
Decision Tree, Random Forest,ANN, SVM, …
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A process of categorizing a given dataset (structured or unstructured) into predefined classes (label
or categories).

• Classification predictive modeling
• Binary classification
•Multi-class classification
•Multi-label classification
• Imbalanced classification

Application UC approach to ensemble learning for classification

Jiang, Yiyue et al., Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-
stretch microscop,Lab Chip Journal, Vol. 17, 2426-2434, The Royal Society of Chemistry, 2017.



Ensemble Learning methods
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•Weak learner(s) 
• Selection of the result by a voting system
• Intrinsic data parallelism

Unite and Conquer Based Ensemble learning method for classification 7

There are multiple techniques to apply ensemble learning to improve classifi-
cation results. The most known methods are bootstrap aggregation (bagging) and
boosting.

In bagging, several subsets of the training dataset are stored in bags using
random sampling on the dataset. A given learning method is applied in parallel
to all these bags. The models are trained with bags of training set and the same
testing set. The final result will be chosen in the classification case using a hard
voting (Fig. 1). If we take the example of a random forest, randomization is also
present in the choice of features to construct the decision trees. The intrinsic
parallelism in bagging is a significant advantage. In particular, today, when most
of the industrial machine learning problem represents huge data quantities. It’s
more and more necessary that their processing and analysis be done on parallel
and distributed architectures.

Fig. (1) Bagging technique

Boosting is an iterative technique where a set of di↵erent weak learners is
used sequentially to define a strong learner (Fig. 2). Each learner is trained using
training data, taking into account the previous learner’s success. Each sample of
the data has an associate sample weight. After each training cycle, the weights
are redefined by increasing the ones of the miss-predicted sample. At each cycle,
a metric of performance is calculated for the learner. This process is repeated
until the chosen number of iterations is reached. When all learners are trained
and tested, a weighted voting mechanism using the calculated metrics is used to
establish the final prediction (Fig. 2).

We suppose that our dataset is decomposed in a learning dataset (LD) and
a test dataset (TD) where card(TD) = 0 for unsupervised learning methods
and card(LD) > card(TD) for semi-supervised learning method. To simplify
the notations, in the following paragraphs, we use the same terms to designate
a learning algorithm and the model resulting from its application to data. Let n
be the size of LD dataset, ` be the number of bags, and L be a set of ` learners
L1, · · · , L`

1. Algorithm 1 represents the bagging technique.

1 Although the machine learning algorithm is di↵erent from the learned model (the former
uses the data to produce the latter), here we will use the same notation for both.

Bagging technique

1. Start. Choose ℓ the number of the bags and 
𝑚 (≤n)  the size of the bags.

2. Iterate. For 𝑖 = 1,… , ℓ do in parallel
a)Sampling. Select the bag 𝐵( by a random 

sampling technique with replacement on LD,
b)Training and testing. Train a model 𝐿( on the 

bag 𝐵( and test 𝐿(with TD dataset.
3. Share. On all the results of ℓ processes, use a 

selection system (like voting) to get the final 
prediction.  



8 Abdoulaye Diop et al.

Fig. (2) Boosting technique

Algorithm 1 Bagging (in: LD, n, m, `, L; out: prediction)

1: Start. Choose ` the number of the bags and m ( n) the size of the bags.
2: Iterate. For i = 1, · · · , ` do in parallel
3: Sampling. Select the bag Bi by a random sampling technique with replacement on

LD.
4: Training and testing. Train a model Li on the bag Bi and test Li with TD dataset.
5: Share On all ` processes’ results, use a selection system (such as voting) to obtain final

prediction

Let ✓ be a threshold from which a model can be considered as su�ciently
precise, P (L) denotes the precision of the learner L and ↵ be a weight attached to
miss-predicted data. We choose ↵ large with respect to the weight of other data in
a bag. The following boosting algorithm allows improvement of a training model
L1 throughout the iterations (algorithm 2). Here, all bags are initially chosen as
the same and identical to the training data set, but this is configurable and may
be di↵erent.

Algorithm 2 Boosting (in: LD, n, m, `, L1, ↵, ✓; out: Lbest, prediction)

1: Start. Choose `, m the the size of the bags ( n), the base weak leaner L1 and define
the bag B1 = LD.

2: Iterate. For i = 1, · · · , ` do
3: Training and testing. Train Li learner on Bi, produce Li model, test it on Bi and

select Wi the ki-size miss-predicted sub-dataset of LD.
If (P (Li) � ✓) then put best = i and Stop.

4: Sampling. Define the bag Bi+1 = (1� ↵i)Ri [ ↵iWi where ↵i the weight given to
miss-predicted data and where Ri is the set of (m� ki) correctly predicted data in Bi

and go to 2.
5: Result. Define Lbest as a weighted combination of the previous l learner.

Bagging and boosting are specifically used to handle the high bias (underfit-
ting) and high variance (overfitting) problems. A classifier su↵ers from high bias
when it’s unable to fit the underlying structure of the training set. This results

Ensemble Learning methods
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• Iterative process
• The miss-predicted data weighted more 
• Selection of a weighted combination of the learners 

Boosting technique

1. Start. Choose ℓ,𝑚 the number and the size of the 
bags, the base week leaner 𝐿# and define the bag 
𝐵# =LD.

2. Iterate. For 𝑖 = 1, … , ℓ do
a)Training and testing. Train 𝐿$ leaner on dataset 𝐵$, 

produce 𝐿$ model, test it on 𝐵$ and select 𝑊$ the 𝑘$-
size miss-predicted sub-dataset of LD.              
If (P	(𝐿$) ≥ 𝜃) then put 𝑏𝑒𝑠𝑡 = 𝑖 and stop.

b) Sampling. Set the bag 𝐵$%#= (1- 𝛼$)
𝑅$ ∪ 𝛼$𝑊$ , where 𝛼$ is the weight given to miss-
predicted data and 𝑅$ is the set of (𝑚 − 𝑘$) correctly 
predicted data in 𝐵$ and go to 2.

3. Result. Set 𝐿&'() as a weighted combination of the 
previous ℓ leaners.



UCEL: Unite and Conquer and Ensemble Learning 
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Unite and Conquer Based Ensemble learning method for classification 11

4 Proposed framework overview: UCEL

Our goal is to build a global learner, composed of classifiers as co-methods and
which uses the UC approach and the EL bagging and boosting technique to im-
prove performance. To this end, we propose to apply the unite and conquer ap-
proach to ensemble-based learning techniques. In the UC context, ensemble base
learners can be seen as co-methods and bags as part of their initial parameters.
Unlike ensemble learning methods, a restart strategy, based on global intermediate
results, will be used for improving the model issued from one learning cycle in the
next learning cycle. The robustness of the global leaner is due to the relevance
of this restart strategy. We call the framework defining this global learner UCEL
(for unite and conquer ensemble Learning). UCEL is composed of several machine
learning methods that collaborate in order to learn from data and produce models
more e�ciently and quickly than individual methods.

Fig. (4) UCEL framework model

The combination of methods in machine learning presents an important rank
of possibilities as we can notice in [2, 9, 39]. The combination of bagging and
boosting using a unite and conquer strategy belongs to the family of learning
methods that can manage bias and variance tradeo↵. This combination can be
seen as the parallel execution of several boosted co-methods, with training data
created with bagging methods. Additionally, boosted co-methods exchange their
intermediate information to improve the conditions for restarting of each cycle of
the co-methods.

• Co-methods: Ensemble base-learners
• Partial initial parameters: Bags
• Restarting strategy is based on intermediate 

global result of the learners

•A. Diop, N. Emad, and T. Winter. A Parallel and Scalable
Framework for Insider Threat Detection. In 27th IEEE
International Conference HiPC, 16-19 Dec. 2020, Pune, India.
•A. Diop, N. Emad, and T. Winter. A Unite and Conquer Based
Ensemble Learning Method for User Behavior Modeling. In
39th IEEE IPCCC Conference, Nov. 6th – 8th, 2020, Austin,
Texas, USA.

Bagging with ℓ processes (ℓ bags & ℓ leaners) 
where each process is itself a boosting process 
with 𝑞 iterations. The bagging processes 
cooperate in the end of each boosting iteration 
by exchanging information. 
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Parallel behavior profiler (in: 𝑇𝐷, 𝑉𝐷, ℓ, 𝑞, 𝜃, 𝐵O; out: 𝐵PQRS ,	𝐿PQRS) 

𝑖)* computing node

control node

in parallel 



UCEL performance
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8 Performance analysis

In the following, we denote by BP (L1, · · · , Lm) a UCEL-based behavior profiler
composed of m learners L1, · · · , Lm, by MultipleL(m) or ML(m) a UCEL-based
behavior profiler composed of m instances of the learner L and, by MultipleL(i)
or ML(i) the ith instance of ML(m), for i 2 [1,m]. We use here both UCEL-based
behavior profiler and UCEL framework to designate a behavior profiler based on
the UCEL approach.

8.1 Focus on anomaly detection methods

The objective is to highlight the interest of UCEL approach with anomaly detec-
tion methods as co-methods. OcSVM [31] is a variant of support vector machines
(SVM), which is a large-margin classifier that establishes a planar decision bound-
ary between positive and negative examples. It can be considered as a way to
apply SVM on outlier detection. The decision boundary OcSVM opts for a spher-
ical approach instead of planar approaches, as the support vector data description
methods (SVDD) [18]. The goal is to find in a high dimension space, which is
the minimal circumcising hypersphere that comprises only the good observations.
IForest [26] is a variant of decision trees and random forest algorithm. It uses
a comparison of the depth of the tree branches to spot anomalies. The shorter
branches are indicative of anomalies. The robust covariance/elliptic envelope [28]
method uses the assumption that the normal data belongs to a known Gaussian
distribution. The outliers are spotted when they are too distant from the center
of the distribution. The local outlier factor [3] method studies the neighborhood
of a data sample. It measures the local density of a given sample with respect to
his neighbors. Outliers samples are detected when they present less density than
their neighbors.

(a) MRobcov(10) vs individual boosted Robcov (b) BP(4AD) vs individual boosted co-methods

Fig. (8) Evolution of the AUC score over the cycles with anomaly detection co-methods

Evolution of the AUC score over the cycles with anomaly detection co-methods
Left: MRobcov(10) vs individual boosted Robcov, 
Right: 4 different anomaly detection methods vs individual boosted co-methods 
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Evolution of the AUC score over the cycles with focus on graph-based anomaly detection using PageRank co-methods.  

Multiple PR(4) BP (4AD, PR, LSTM) 
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Weak scalability: due to the synchronization steps in the end of each cycle.

Strong scalability: the strong scalability of 10 MLP as co-methods, a dataset size of 500000 entries. The speedup increases
from 1 to approximately 4.5 as the number of cores increases.

in iterative boosting manner. We also know that our model is
sensitive to an unlucky random sampling. These cases can be
spotted when the AUC-score is oscillating.

If the precision threshold is not reached, UCEL selects
the best method or WVC during the iterations. For this
example, we choose the maximum number of iterations equal
to 10. In sub-figure 2(a) and 2 (b) the precision threshold
is never reached, but the AUC-score increase from 0.50 to
0.94 for (a), and 0.50 to 0.95 for (b). If we focus on the
sub-figure(a), UCEL mostly improves the training accuracy
from the methods with an initially low AUC-score. This is a
direct consequence of the use of this particular combination
of boosting and bagging that improves weak learners’ training
errors.

However, the Robcov instances (9) and (10) don’t seem
to be improving a lot by UCEL. This is indicative of a
poor selection of hyperparameters. This implies that tuning
a classifier plays a non-negligible role in the performance
of UCEL. Hence, except for the instances (9) and (10), the
methods starting with low training AUC-score get improved
by the restarting process injection of the wrongly classified
element. This also indicates that even when two of the co-
methods do not contribute to the classification performance,
the UCEL approach still allows the other co-methods to get
better classification results.

Table I shows the result of the training and testing AUC-
score without and with UCEL framework. Let 4AD represents
an execution UCEL with four anomaly detection methods and
5SM a UCEL with five different supervised methods. The
train-test(TT) results showcase high bias and high variance
issues from the best method of the ten Robcov instances, and
the four anomaly detection classifiers without UCEL. This
points out that UCEL helps to manage bias and variance
tradeoff to obtain better testing results.

In the supervised learning case, the sub-figures 3 (a) and 3
(b) respectively present 10 MLP instances in (a) and 5 differ-
ent supervised classifiers in (b). In this case, we also remark
that UCEL only improves the co-methods with starting low
AUC-score and doesn’t improve the ones with an already high
score. This a consequence of boosting and bagging working
well only with weak learners as base-method. Strong learners
can get improvement using this strategy, but not to the same
extent than weak learners [7]. For instance, the KNN, GNB,
and SVM classifiers are not improved by the UCEL process.
Their AUC-score stays rather good and stable through the
iterations. This is also indicative of well-tuned classifiers for
this problem.

However, in (b), the WVC of UCEL using all the co-
methods produces better results than the individual classifiers.
Hence the WVC was then chosen as the best model for the
behavior profiler. In table I, we can observe that the best
method of 10 MLP instances is still suffering from overfitting
since the train test score varies from 0.95-0.50. The UCEL
framework fixes this issue and helps to obtain a train-test score
of 0.97-0.96. In the example with the five supervised learning
methods, the AUC-score is 0.98, so pretty high for the indi-
vidual co-methods. Despite that, UCEL adds an improvement
of 1% to their scores. We can conclude that UCEL helps to

improve the class prediction performance of the training and
the testing error by managing the bias-variance tradeoff. Even
if the classifiers are already performing well, UCEL might add
a slight improvement with its weighted voting mechanism.

Considering the overall performance of UCEL for the
three scenarios of insider attacks, we obtain mostly satisfying
results. Table II presents the test results of 10 Robcov, 4
AD, 10 MLP, and 5SMg methods. In most of the scenarios,
we tend to see better classification results for supervised
methods than anomaly detection methods. This confirms the
best strategy is to adopt the use of semi-supervised methods
when the data is imbalanced, and then use supervised methods
when the companies dispose of enough feedback. They’re
also the possibility to apply oversampling techniques to the
imbalanced dataset before using supervised learning methods
[14].

Scenario 10 Robcov 4AD 10 MLP 4 SM

1 0.95 0.95 0.95 0.96
2 0.88 0.92 0.96 0.99
3 0.82 0.64 0.98 0.93

TABLE (II) Test results for 3 types of insider attack

B. Parallel performance analysis
We highlighted that the UCEL approach gives reliable

results to detect insiders. To study the performance of the
parallel version of the behavior profiler, we ran an imple-
mentation of parallel algorithm 2 on the GRID5000 platform.
On the Lille cluster of GRID5000 we used 9 nodes with 4
cores each for our experimentation. The Python language and
the Multiprocessing, Multithreading, and mpi4py APIs and
libraries are used to express the algorithm’ parallelism. The
performance of the implemented BP is measured in terms
of speedup that we can obtain when dataset size increases.
We recall that speedup represents the ratio of the serial and
parallel execution time of an implementation.

Fig. (4) Parallel behavior profiler on GRID’5K (8 co-
methods run on 9 nodes)

Figure 4 shows a significant speedup which reaches 4.3
when the mpi4py library is used. This is because the co-
methods are working in parallel for their training and testing
phase. This confirms that mpi4py is more fit to benefit from
cluster hardware than the other one. Even though the execution
is always faster for the parallel implementation, we can

Asynchronous communication:  week & strong scalability
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Impact of asynchronous and synchronous communication between co-methods on performance 

Asynchronous vs Synchronous model speedup 

A Scalable and Parallel Framework for Classification and Anomaly Detection 9

Fig. 3. Asynchronous vs Synchronous model speedup test

From the test results of the figures 3 and 4 , we can conclude that the asyn-
chronous approach performs better than the synchronous approach. Specifically
in the figure 4 we compare the two approaches for di↵erent numbers nodes and
obtain better maximum speedups but essentially the same gap between them.
However, we can already conclude the superiority of the asynchronous approach
since it avoids the synchronization steps and reduce the number of communica-
tions. Moreover, even if we observe a small drop in performance after a peak, we
also remark stabilization of the speedup values (3.8) at a higher level than the
synchronous model.

5.1 GPU impact

In order to study the influence of using hardware accelerators on UCEL, we
show here the impact of parallel programming with shared memory on GPU of
a method representative of the co-methods that can be used in UCEL. The
autoencoder-based co-method generally takes more time than the other co-
methods (i.e., 10 slower than the other used co-methods). Since its custom
classifier class is based on TensorFlow, we use this library capabilities for task
parallelization. To use the maximum possible configuration possible, we use a
node with 20 cores associated with GPUs. Furthermore, we optimize the LSTM
layers to use the CUDNN library to parallelize this method using GPUs. These
libraries allow parallelizing the computation of the artificial neural network us-
ing Nvidia GPUs and the CUDA libraries. For that purpose, it was necessary to
modify the configuration of the autoencoder-based methods. CUDNN imposes
specifics layers and node configuration in order to send the computation of ar-
tificial neural networks to a GPU device. These configurations are the scope of
the activations functions (e.g., tanh) and other hyperparameters choices.

Max speedup as a function #nodes

10 A. Diop, N. Emad

Fig. 4. Max Speedup comparison in function #nodes and programming models

We obtain a speedup up to 10 for the autoencoder methods with two GPUs
(see figure 5). It is important to note that in this case, that we do not see
performance improvement if the size of the data is not su�ciently large. We did
this test with a dataset of ten million events. With a smaller dataset size, the
data transfer to the GPU takes too much time to have a significant speedup
gain. Hence, we can conclude that the usage of GPUs allows better speedups for
the UCEL framework. However, only if there is su�cient activity data.

6 UCEL Use case: cyber-security

To experiment with the UCEL framework for the cybersecurity problem, we use
the open-source version of the Computer Emergency Response team (CERT)
insider threat dataset R6.2. It is a set of data composed of employee’s regular
post-login activity in a simulated company environment context and insider at-
tack scenarios perpetrated by synthetic malicious actors. These scenarios are ab-
normal and suspicious activities that are dangerous for enterprises. This dataset
is the most used in the domain of insider threat detection. For this case, the
UCEL framework produces employee behavior profilers. This model determines
if new unlabeled employee activity is normal or malicious. The behavior profilers
we built learn user behaviors using the training set and the incorrectly classified
elements in the validation set from the CERT R6.2 dataset. Before that, we
applied di↵erent prepossessing steps to prepare the data for the models.

The figure 6 represents AUC evolution of UCEL with six di↵erent co-methods
OcSVM, IFores, Robcov(EE), LOF, PR(Pagerank) and LSTM(Autoenc+LSTM).
We can observe that the initial AUC of co-methods, except IForest, Ocsvm are
improved by the UCEL framework. The improvement on PR and LSTM is small
(approximatively from 0.83 to 0.96) because they have a high AUC at the be-
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• Important impact of  hybrid HP AI & LA  : Be aware of not always using the 
libraries.

• Interactions between machine learning and linear algebra approaches must be 
studied more.
Ø UCEL  is a good example, and the approach is extensible.
Ø Well adapted to high-performance parallel/distributed supercomputers

• ML presents a formidable tool bringing a tsunami of solutions to many problems
Ø Experiment data (even when it does not seem interesting) must be saved...


